
The Legacy Continues: MPE/iX in an Open Systems World
4016 - 1

PAPER #4016

The Legacy Continues: MPE/iX in an Open Systems World

Mike Yawn
Senior Consultant

Hewlett-Packard Commercial Systems Division
19447 Pruneridge Avenue MS 47UA

Cupertino, CA 95014
myawn@cup.hp.com

Abstract

With the changes that have transformed the computer industry in the past years, where does the HP
3000 fit? Is the move to UNIX unavoidable, or do customers have a choice? How can you make the
right investments to run your business today, and still be confident that tomorrow won’t turn your
efforts into money down the drain?

This presentation will focus on Information Technology Architecture as a way of enhancing your
ability to respond to the changes your company is facing. Through a well defined IT Architecture,
MPE, UNIX, and Windows systems can peacefully coexist in an environment that preserves legacy
system investments, while allowing the introduction of new technologies that may not be available for
the legacy platform.

The role of open system systandards, client/server computing, and object-oriented technologies will
all be covered as they relate to the creation of a successful IT Architecture.

What is an IT Architecture, and why do you need one?

Is calling a system analyst or programmer an ‘IT Architect’ just a case of title inflation, such as
calling garbage collectors ‘sanitation engineers’? What is the difference in creating an architecture,
as opposed to designing an application? There are several aspects we will emphasize of good
architecture design. Adaptability to future changes, in either the functional requirements of the
application or in the data processing infrastructure, is part of the design of an IT Architecture. An IT
Architecture also attempts to define and meet requirements beyond the functional definition of
software requirements, in such areas as high availability, security, and performance. While it is true
that the best systems analysts have always done these things, we think the distinction between
enterprise-level strategic IT planning and application level design is a valid one.

If you’re going to operate a single system, dedicated to running a single off-the-shelf application
package, then you may not need an IT architecture. The instructions from your hardware and
software vendors are your blueprints. While topics such as high availability are no less a concern
with off-the-shelf software than they are with your own development efforts, the approach must be
different. You must approach these areas from a system management perspective, rather than
incorporating features as part of the overall application design. If you’re going to running multiple
applications, with each one independent of the others, the same is true: you have more work to do
from a system administration point of view, but you still don’t require the services of an “IT
Architect”.

Consider a case that’s more typical of IT challenges of the typical IT department. You have a
combination of application software packages, which may be in-house developments or third-party

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 2

purchases, and they need to interface with each other. The financial packages need to know how
much inventory is in the warehouse and what payroll expenses are. The production scheduling
program needs to know what the marketing forecast is. If you design interfaces between these based
on the assumption that none of the applications will ever change, you’re operating in the traditional
programmer’s role. But if you design interfaces knowing that the applications will change, the
systems they run on may change, and the requirements for what data is shared may change, then
you’re thinking like an IT architect.

Now, we add in the complexities of today’s IT challenges. The systems that you must interface are
not homogeneous, but represent several different operating systems and vendors. They aren’t all
located in a single computer room, but are geographically dispersed. Some of them -- the servers --
are under control of the IT department, but the majority of them (clients) are on user’s desks, where
they may or may not be backed up and are almost certainly not secure. Software you do not control
and have never heard of may be introduced onto these systems at any time. Business requirements are
much more aggressive than they once were. Perhaps your system used to batch up transactions for
interfacing on a weekly or even monthly basis. Now you’re probably interfacing the systems on a
daily basis, but even this may not be good enough for some applications. You may have to provide
up-to-the-minute access to any of your company’s data, regardless of what system it resides on, to any
other system on an as-needed basis.

While there has always been some need for IT Architects, the changes caused in the industry by open
systems have increased severalfold the complexity of designing an IT architecture. In the early days
of the HP 3000, for example, most of the choices were simple. For languages, FORTRAN and
COBOL were the most popular choices. For a database, there was IMAGE; KSAM provided indexed
files. For the user interface, you most likely used VPLUS. Best of all, you were assured that all of
these pieces would work together: the job of a ‘system integrator’ had never been heard of.
Everything came from the same vendor, and had been designed and tested to ensure it all
interoperated correctly.

Today, you can still make those same choices: all the products mentioned above are still available.
But the resulting application will not be portable. It will not provide the ease of use of a graphical
user interface, or the flexible inquiry capabilities of a relational data base. Your programmers’
productivity will be less than with more recent tools that facilitate rapid prototyping and code reuse.
So if you are starting out today, your choices are almost certainly going to be different. The products
you choose will come from more than one vendor, and possibly encompass more than one hardware
platform. It used to be that except for a few limited choices (COBOL or FORTRAN?), the tools you
had to work with were preordained by the hardware platform you chose. Your job was then to
develop and deploy the applications. Today, your job is to build the technology infrastructure: you
should select the applications first, then the tools, letting those choices determine the hardware
platforms required. It will be up to you to make the pieces fit, and work, together. Without an IT
Architecture -- a blueprint for this infrastructure -- you aren’t prepared to make the choices required.

You want to be able to pick the best tool for each job: the best program development environment, the
best database management system, the best applications -- based on the criteria that matter to you.
With a robust architecture, you can do this, and make all the pieces play together.

Why Standards aren’t a substitute for a software architecture

Everybody wants Open Systems. But before you jump on the bandwagon, find out what it is you
really want when you say you want open systems.. Is it application portability? Interoperability? The
ability to change hardware vendors? Database vendors? Application vendors? Lower acquisition cost
(which may be offset by higher operating costs)? “Open” has so many definitions that a blanket

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 3

statement of “we want open systems” says nothing. Define the criteria by which openness will be
measured, and to what extent openness is to be favored over other requirements. (Will you still prefer
the “open” solution if it is 20% slower than the “proprietary” solution? If it fails twice as often?)

There is undoubtedly a move in the industry towards increasing adoption of open systems. These
systems are most frequently implemented in addition to, rather than in place of, existing proprietary
systems. Despite the increasing market share of open systems, many IT professionals have not yet
realized that truly open systems cannot be bought -- they must be built. It isn’t just running on top of
a UNIX-derived operating system. If you are committed to open systems, every decision you make --
hardware, software, languages, applications, tools -- will be restricted by the requirement to be
“open”. Open software is more portable; there is no question on that point. But there is a question
about whether portability is as important as the current emphasis suggests. Open systems do not
inherently provide any advantage in adaptability, performance, functionality, reliability, security, or
availability. You will have the most flexibility in your future IT directions if you set portability
requirements for all of your new purchases and new development. But, you should also develop
architectural requirements in the areas of reliability, performance, productivity, system administration
difficulty, and any other areas that you feel are important. There should be specific goals in each
area, and a prioritization of the requirements so that when goals are found to be mutually exclusive it
will be clear which goal should receive priority.

What are the factors that need to be considered in developing a software architecture? You should be
considering at least the following:
• Functionality
• Data Integrity
• Performance
• Security
• Availability / Fault Tolerance / Resilience
• Support of Development Environment
• End-User Productivity
• Difficulty of Administration
• Interoperability
• Migration

These criteria can be applied to the selection of hardware platforms, operating systems, databases,
tools, and applications. An organization that says it will only choose UNIX-based solutions has
decided to put the final two items, migration and interoperability, above all others. It is far better to
specify what is required for each of these areas than to assume that a particular solution strong in a
few areas will meet your requirements in all of them. There are always trade-offs to be made; there is
no one system or architecture that will be best in every area. Although there will be no one “ideal”
solution, there are enough technologies available that you should be able to create an IT architecture
that balances these attributes in the way that best serves the needs of your business.

Characteristics of Good Software Architectures

In descriptions of software architectures, you will often hear the terms modular, layered, object-
oriented, or tiered (as in two-tiered or three-tiered). These represent complementary, but different,
aspects of how the software is divided into pieces. An architecture may have all of these
characteristics or none of them. In general, the more of these characteristics an architecture
possesses, the more flexible it will be, and the less it will cost to maintain over the long run.

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 4

• Modular software is function-oriented. A modular design facilitates making changes in the
business processes supported by the software.

• Layered software isolates application logic to the greatest extent possible from the
implementation details of operating systems, databases, networks, etc. Layered software
facilitates software portability.

• Object-oriented software is modular, incorporates data hiding, and includes software reusability
as a design objective.

• “Tiered” is often used to describe a distributed hardware configuration, rather than a software
implementation. In this paper, we will use tiered to describe the software characteristics that
allow the software to be distributed across multiple systems in a client/server environment.

We’ll see how each of these characteristics can be implemented in HP 3000-based software.

Evolution of HP 3000-based Software Architectures

As we develop our ideas for an application software architecture, it helps to recap briefly what types
of architectures have been used in the past. It is, after all, the limitations of these architectures that
drive us to seek something better for new applications. Understanding where we have come from
gives us a clearer understanding of where we would like to go.

This paper will present a brief trip through the history of software architectures on the HP 3000. As
you study the progression, don’t be disturbed if you find that the model which best describes your
current architecture is the first one described -- the oldest model. The HP 3000 and its application
development subsystems -- TurboIMAGE and VPLUS -- are so well suited to a particular
architectural model that many, if not most, users have never seen a strong benefit to moving to a later
model. Indeed, after studying everything we can present to you about what today’s software
architectures look like, you may still feel that the “classic HP 3000” model is the one best suited to
your business needs. That must be the key consideration -- not moving to the latest and greatest for
the sake of change, but finding the model which best suits your business needs. If your business
needs have changed little, then a radical shift in architecture probably isn’t warranted.

The Classic HP 3000 Architecture

Figure 1 presents the classic HP 3000 application architecture. The program code is most likely
implemented in COBOL. Data storage is most frequently TurboIMAGE, although KSAM and a
number of flat-file formats are frequently used as well. VPLUS is most commonly used to provide the
user interface. Various system services, such as process management, are accessed via the MPE
intrinsic mechanism.

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 5

CALL "VSHOWFORM" USING COMAREA, ...

CALL "VREADFIELDS" USING COMAREA, ...

...

CALL "DBPUT" USING BASE, SET, MODE ...

...

IF ERROR

CALL INTRINSIC "QUIT" USING ERR-NO

...

VPLUS

TurboIMAGE

MPE

XL.PUB.SYS

NL.PUB.SYS

Application Program

Figure 1: The Classic HP 3000 Architecture

This architecture is widely used for a number of reasons. One is its simplicity; there is nothing in the
architecture which doesn’t have to be there. Thus, development and maintenance are
straightforward. The subsystem technologies are extremely well tuned to the HP 3000 environment,
such that even with all the advances in past twenty years, the combination of components shown
above will generally outperform systems built on a newer technology base.

The problem arises when there is a desire to change any of the components in this model. If you want
to replace TurboIMAGE with a relational database, you are hindered by the fact that database access
code is scattered throughout the entire application. If your application grows so large that it cannot
run well on a single system, there is no straightforward way to distribute the application across
multiple systems. If it ever became desirable to move the application entirely to another platform, you
would be faced with a near rewrite to remove the dependencies on MPE intrinsics, TurboIMAGE, and
VPLUS. The classic application architecture provides great functionality and performance, but very
limited flexibility and no portability.

The Layered Architecture

A layered application architecture will address many (but not all) of the limitations of the classic
architecture. The main difference between the classic and layered architecture is the creation of a
software layer that separates the application code from the subsystems and operating system that
provide the technological base for the application.

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 6

MPE

NL.PUB.SYS

CALL "DISPLAY_FORM" USING

FORMNAME ...

CALL "READ_FORM" USING FORMNAME,

DATA_BUFFER, ...

...

CALL "GET_MASTER_RECORD" USING

DATABASE, BUFFER...

...

IF ERROR

CALL "FATAL_ERROR" USING ERR-NO

...

Application Program
VPLUS

TurboIMAGE

XL.PUB.SYS

curses

ALLBASE

POSIX

User Interface

Isolation

Layer

Op. Sys.

Isolation

Layer

Database

Isolation

Layer

Figure 2: The Layered Architecture

Figure 2 depicts a layered application architecture which could be used for the same application. The
insertion of a software isolation layer removes any direct dependencies between the application logic
and the underlying subsystems. There are a number of advantages realized from this architectural
change.
• Much of the code in the intermediate layer will be leveragable. For example, to display and

collect data from a VPLUS form requires a relatively large number of calls (VGETNEXTFORM,
VINITFORM, VSHOWFORM, VREADFIELDS, VFIELDEDITS, VFINISHFORM,
VGETBUFFER). This entire sequence could be replaced by a single call, passing a form name
and returning a data buffer. The intermediate user interface layer can be leveraged for all forms
within the application, and even used in other applications.

• All data structures and logic specific to the subsystems can be moved out of the application logic,
making the application more compact and maintainable.

• Application programmers need not be trained in the intricacies of VPLUS, TurboIMAGE, or
MPE; they can simply write to a defined set of APIs (Application Program Interfaces) that are
provided by the intermediate layer.

• If the interfaces to the intermediate layer are made sufficiently abstract, the underlying
subsystems can be changed without affecting the application. For example, a VPLUS user
interface could be replaced with a curses user interface, without changing the API used by the
program. (This requires thoughtful design of the API. For example, do not pass the VPLUS
COMAREA between the program and the intermediate layer; this is a VPLUS specific
construct.)

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 7

• The application code itself is now portable. Components of the intermediate layer may be
portable, depending on the subsystems accessed. Database access code for Allbase will be
portable to HP-UX; code for TurboIMAGE will not be. For non-portable components, it will
only be necessary to re-implement the specific module in question; compare this to the need to
rewrite the entire application for the classic architecture.

As you can see, there are a number of advantages to using the layered architecture. The cost of such
an architecture is the run-time penalty of processing additional procedure calls each time a subsystem
is accessed. Most applications will be able to absorb this cost without a noticeable increase in
response time or any measurable degradation in overall system performance. In reality, performance
is more likely to improve as a result of this architecture. Rather than all programmers coding their
own database access routines in varying fashions, you can have your best database programmer
develop the intermediate layer. It will also be more practical to perform performance measurement
and tuning on this single module than on the entire application.

The Client/Server Architectures

The Gartner Group describes five different models of Client/Server architecture: Distributed
Presentation, Remote Presentation, Distributed Logic, Remote Data Management, and Distributed
Database. We will look at three of these in detail (the remaining two will be presented as variations
of these three).

The Remote Presentation architecture, as shown in Figure 3, is the most widely used of the
client/server architectures. This is perhaps because it solves the problem that forced the evolution of
client/server architectures in the first place; the demands placed on the host system to support
increasingly CPU intensive user interface technologies. If your users are satisfied with the look-and-
feel of VPLUS forms based interfaces, then there may be no need for you to adopt a client/server
architecture. But most users are demanding drop-down menu bars, scrollable pick lists, context
sensitive help, and other features found on Graphical User Interface (GUI) based systems. If you try
to implement these features on dumb terminals, you will find that they consume more CPU resources
than VPLUS by a factor of 10 or more. Thus, you will be forced to either upgrade your CPU, support
fewer users, or offload the processing of the user interface to a less expensive processor. It is this last
option that is most economical, plus provides the greatest flexibility. CPU-intensive user interface
processing is performed on the client system, while data access and application logic continue to be
provided by the host (server) system.

 In the Layered code model, we created a software layer that isolated the application logic from the
specific user-interface technologies. This layer could provide transparent portability between, for
example, VPLUS and curses. This is possible because both VPLUS and curses are screen-based
interfaces; and while the mapping between functionality is not exact, a workable abstraction can be
created to allow support of both environments.

Graphical interfaces such as Windows, Motif, or the Macintosh are quite different. This difference is
more than just in appearance; there is a difference in the philosophy of how an application is
controlled. Non-GUI applications typically have a standard program flow that is determined by the
application designer. Users can influence this somewhat; for example, function keys can be used to
navigate within the application. Compare this to the typical GUI application. Actions selectable
from the application’s menubar may give access to several dozen functions. Other than disabling
selections that are not currently available, the application imposes no ordering of actions upon the
user.

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 8

TurboIMAGE

XL.PUB.SYS

ALLBASE

MPE

NL.PUB.SYS

POSIX

Client

Network

Code

Database

Isolation

Layer

Application

Client

U
s
e

r
In

te
rf

a
c
e

Op. Sys

Isolation

Layer

NetIPC

BSD

Sockets

P
ro

g
ra

m
 L

o
g

ic

Application

Server

Server

Network

Code

Client Server

Figure 3: Remote Presentation Client/Server Architecture

This different view of how an application is controlled leads to a different way of constructing
applications. The older architecture is based on a prompt-and-response model; the application
prompts for input (by displaying a form in the case of VPLUS), the user inputs data, and the cycle
repeats. The new architecture is based on an event-action model. The application waits for the user
to do something (an event), which may be selecting a menu item, entering data into a dialog box, or
clicking on an icon, among others. The application responds to this by performing the indicated
action, and then waits for the next user event. The application is controlled by the user interface; not
the other way around. This change is indicated by the reorganization of the application modules in
Figure 3; instead of the program code calling functions within the User Interface when user
interaction is required, the User Interface now calls functions within the application logic module
when an action is requested. This control of the application from the user interface is characteristic
of all modern architectures, and will be seen in all the models we examine from this point forward.

The Distributed Presentation model (not shown) is a variant of this model in which a portion of the
user interface logic continues to reside on the server.

The Distributed Logic model, as illustrated in Figure 4, moves portions of the application logic to the
client in addition to the user interface. This permits tasks which are CPU intensive to be offloaded
from the server system, or for certain tasks for which response times are particularly critical to be
performed locally. For example, a production controller in a manufacturing environment may
download a production schedule, and then perform analysis of various what-if scenarios on the client.

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 9

If changes in the schedule are made, the results can then be transmitted back to the server. In a
catalog order entry environment, the server would be accessed to determine the availability of
merchandise, but processing such as calculating an extended price and adding sales tax can be
performed locally in the client.

TurboIMAGE

XL.PUB.SYS

ALLBASE

MPE

NL.PUB.SYS

POSIX

Database

Isolation

Layer

Application

Client

User

Interface

Op. Sys

Isolation

Layer

T
ra

n
s
a

c
ti
o

n
 L

o
g

ic

Application

Server

Application

Logic

Client

Network

Code

NetIPC

BSD

Sockets

Server

Network

Code

Client Server

Figure 4: Distributed Logic Client/Server Architecture

Applications built upon the distributed logic model are frequently thought to be more complex than
those built upon other client/server models. This is not necessarily the case. The perception arises
primarily from the fact that in the other models, there is widely used middleware that handles the
network interfaces. In a distributed logic implementation, the programmer is much more likely to be
writing directly to a network API, rather than through a middleware layer. We feel that this is not as
intimidating as it may at first seem.

In the Remote Data Management model (Figure 5), virtually all application logic is moved to the
client. This is also referred to as the Database Server model, since all that remains on the server in
this configuration is the database and code directly associated with data access. A database front-end
provides the illusion of local database access; calls are made to this front-end as if it were the
database engine. The front-end then sends the database requests over the network, using either a
general-purpose mechanism such as BSD sockets or, more commonly, an API designed specifically
for database communication, such as ODBC. A database process on the server receives messages
from the client, performs the actual database operations, and returns requested information and status
to the client. An advantage of this model is that the programmer can now take advantage of the latest
generation of Rapid Prototyping / Rapid Development tools, such as Visual BASIC, Delphi, and

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 10

PowerBuilder, while still enjoying the high reliability and performance of mainframe or
minicomputer based database systems.

TurboIMAGE

XL.PUB.SYS

ALLBASE

Application

Client

User

Interface

Application

Logic

Database

Front-End

Database

NW I/F

Database

NW I/F
Oracle

Client Server

Figure 5: Remote Data Management Client/Server Architecture

The Distributed Database architecture (not shown) is a variant of the Remote Data Management
architecture in which the database is itself distributed. It may be distributed between the client and
server, or across multiple server systems. Maintaining the integrity of a distributed database in case
of processing interruptions such as system failures is a far more complex task than maintaining
integrity on a single system. Although it is possible to write code to manage this task yourself,
organizations implementing a distributed database should consider implementing a Transaction
Manager designed expressly for this purpose.

The various flavors of client/server architectures provide many advantages over the traditional host-
terminal architectures. In each of the cases we have discussed so far, the distribution of work between
the client and the server is fixed at the time the architecture is designed. An application architecture
based upon the Remote Presentation model, for example, may not be easily adapted to allow
additional processing to be added to the client at a later time. Since it is possible that the client/server
model which best suits your processing needs may change over time, our final evolutionary step is to
create an architecture which allows any of these client/server architectures, or a combination of them,
to be used, with the capability of switching between models fairly easily when required.

The Maximum Flexibility Architecture

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 11

We’ll refer to this final architecture as the Maximum Flexibility architecture, since that is its
distinguishing characteristic. The design of this architecture, shown in Figure 6, includes the
following features:
• To the programmers on the client side, all resources appear to be local.
• Local (client-side) isolation layer accesses local objects directly, and accesses remote objects via

the messaging layer.
• Messaging middleware layer provides capability to send messages over various types of networks

using different APIs. Ability to support asynchronous (non-blocking) messages.
• Single monitor process at server to handle incoming traffic from clients; can be replicated if

needed to support workload.

Local

AppLogicApplication

Client

U
s
e

r
In

te
rf

a
c
e

TxnRouter

Database

Access

M
e

s
s
a

g
in

g
 I

n
te

rf
a

c
e

Local

OpSys

Local

Database

OpSys

Access

OpSys

Database

AppLogic

Monitor

Client Server

Figure 6: Maximum Flexibility Architecture

The design of this architecture was driven by two overriding objectives. First, it should work in the
largest possible variety of configurations; flexibility is the number one requirement. This means that
at every design point, the architecture strives to present the greatest number of alternatives. An
architecture can be made simpler by limiting the choices at each of these design points; for example,
if only MPE/iX and HP-UX need to be considered as operating systems, or if only one database
technology needs to be supported. The architecture also provides the capability to be scaled anywhere
from a single-user model on a PC, to a single multi-user system with terminal connections, to a
client/server architecture based on any of the previously described models..

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 12

The second overriding objective is vendor independence. While many people today equate “open
systems” with running on a UNIX-derived operating system, we have chosen to take the extreme
position (at least within this architecture) that the required degree of openness is to be completely
vendor independent. Thus, the architecture is designed to provide independence from hardware
vendors, operating system vendors, database vendors, tool vendors, and stress relief medication
vendors.

Exceptions will be noted where portions of the code are viewed as “throwaway”; that is, they can be
redeveloped using another technology when required at a lower cost than designing them up front to
support multiple underlying technologies.

In the client/server architectures described previously, the application always knew where to look for
each component. In a Remote Data Management model, the database was on the server, while
application logic was local. In the maximum flexibility architecture, the location of all components is
flexible. For each component, there will be code on the client which receives requests from the user
interface. This client code will then determine, by accessing configuration information which may be
dynamically changing, where to go for the required service. It may be locally on the client, or on any
of a number of servers which can be accessed over the network.

One component that is shown explicitly in this architecture for the first time is a monitor process
running on the server. There is some such process in any client/server implementation, but
depending on the architecture selected and middleware products used, it may be transparent to the
programmer. The monitor is responsible for receiving the various messages that can be received from
clients, and either processing them or passing them along to another process which will handle them.

Trends in Software Architecture

The evolution described above was not the random emergence of new ideas, but rather movement
along a well-defined path. We will examine three of the most important ways in which software
architectures have been changing throughout this evolution.

Monolithic to Modular

One trend that has been prevalent in programming for some time is a move toward smaller
compilation units. A typical COBOL program written for a mainframe environment in the 1970s
might be tens of thousands of lines of code in a single monolithic program. The logic flow through
the program might be very difficult to follow: most COBOL programmers learned their craft before it
became unfashionable to use GO TO as the preferred method of controlling program flow. As the
benefits of structured, or modular, programming began to be realized, the look of the typical program
changed. The program was now broken down into smaller logical units. PERFORMing these
discrete sub-units, and not using GO TOs indiscriminately to control the program flow, allowed the
program to be seen as a collection of smaller well-defined units rather than as one huge program. In
some cases, programmers took the next logical step of actually moving some of this code into separate
programs altogether that would be CALLed from the main program, although COBOL did not
facilitate this step as well as later languages.

Procedure based languages, such as Pascal and C, became much more prevalent during this time,
because their structure is well suited to this new way of modularizing code. But nothing prevented
the COBOL or FORTRAN programmer from incorporating the new thinking into his programs.
Then, as now, it was not necessary to throw away your existing technology investments to take
advantage of the latest technologies.

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 13

The breaking down of code into smaller functions was mirrored by changes in the way the program’s
run-time data was handled. Again, a large monolithic chunk of code tended to treat its data as
monolithic, as well -- everything went into a COBOL Working-Storage section (there was no
alternative), usually with no indication of what parts of the program would access which data. With
procedure-based languages, it was possible to create variables that were local to a particular function,
as well as data that was global to an entire compilation unit or process. Making data local to a
function helped provide greater control over it; the programmer could be confident that only the
intended code could be modifying data values. This worked well when the data was only needed by a
single function. For data used in several functions, some advocates of structured programming
recommended that global variables always be passed explicitly into any module that might modify
them. Although popular modular languages never enforced this restriction, those programmers who
followed it would have an easier time understanding where global data was being used within a
program. This set the stage for the introduction of object-oriented programming practices, which
we’ll come to shortly.

Imbedded Interfaces to Layered

When dinosaurs roamed the earth and the caveman programmers chiseled their programs onto stone
tablets, portability wasn’t a concern. The early mainframe era wasn’t much different; computing
resources were far too expensive to allow for elegant software architectures that could be ported to
another system that probably hadn’t been invented yet. But the minicomputer era brought very
different economics to the industry, and for the first time it became practical to think in terms of
creating software that might someday run on a different environment than the one for which it was
initially created.

The most important design factor for creating portable software is having a layered software
architecture. A modular software architecture, as described in the previous section, breaks software
into small functional pieces. But each of these pieces may still interact with many different system-
dependent or middleware components -- the operating system, the database, the network, etc. In a
layered software architecture, each of these interfaces to the system on which the application resides
would be separated from the application itself. With a separate database interface layer, for example,
if it becomes desirable in the future to change the database implementation, only this layer needs to be
changed.

A properly layered software architecture provides all of the following benefits:
• • Greater portability between platforms
• • Easier adaptation to new technologies (different database, different networking protocols, new

middleware layers, etc.)
• • More flexibility in distributing tasks between client and server (or peers)
• • Improved ease of maintenance

Procedure-Centric to Data-Centric

As discussed previously, the change in how code was organized was accompanied by a change in the
organization of data. There was a further evolution in the relationship between code and data that
went beyond merely reorganizing data into “global” and “local” units. Moving data that was unique
to a task into the function responsible for that task removed much clutter from the set of data
managed by a program, but did little to help manage the data that needed to be global in scope.
Explicit passing of any global variables into any routine that modified them helped answer the
question of “who’s using the data," but did nothing to guarantee that the data was used in a consistent

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 14

fashion (for example, one routine that modified a variable might perform a check to not allow a
negative number to be stored, whereas another routine in the same program might omit this test).
The large number of potential accessors, with no guarantee of consistent behavior, made maintenance
and troubleshooting of such programs difficult. Another frequently encountered problem was that if
it was necessary to change the format of the data for any reason, it became difficult to discover all the
places in the code that might be affected by the change. Many IT organizations are now tackling the
problem of expanding date fields to accommodate 4 digit years, and are encountering this problem
head-on.

Thus, our next milestone in the evolution of flexible programming is the nearly-object-oriented
concept of “data hiding." The reasoning is straightforward: the fewer ways in which a given piece of
data can be modified, the smaller the chance of inconsistency in the way modifications are handled.
Similarly, the fewer routines there are that know the physical representation of a piece of data, the
smaller the impact of any change to that physical representation. The objective of data hiding is to
minimize the number of routines that a) know the physical representation of a given data item, and b)
may modify the contents of the data item.

There are numerous ways in which data hiding may be implemented. Many organizations will
implement data hiding by agreement -- there is no enforceable prohibition against directly accessing a
data item, but routines are provided to read and write values to the data, and it is agreed that everyone
will use these routines instead of bypassing them. In other environments, there may be security
implemented on the actual data items such that only the approved routines will be able to access or
modify them. This is particularly common with data that is sensitive or where the opportunity for
mischief is great (e.g., payroll records).

There are several good examples of data hiding on any MPE system. In moving from the classic
MPE V system to MPE XL, the internal representation of many data items changed from 16 bits to 32
bits to match the new architectural word size. Yet because most programmers never access these data
items directly, but only through the MPE intrinsic interfaces, programs that represent these fields as
16 bit fields can in most cases continue to function without changes. (In those cases where the value
stored in the field cannot be represented in 16 bits, the programmer will have to make modifications.)
Another example is the TurboIMAGE database system, which implements data hiding at the record,
rather than the data item level. If you use a particular field in a TurboIMAGE database, then any
changes to the physical representation of that field will need to be reflected in your program.
However, if you use a list parameter that returns only the fields you specify, then your program will be
unaffected by any changes to other fields in the record. The record can be completely reordered,
fields can be added or dropped, and your program will continue to work.

Why Objects are a key technology for today’s software architectures

Whether you adopt a true object-oriented language such as Smalltalk or C++, or develop in a
traditional third-generation language such as COBOL or C, or use fourth-generation development
tools, you should be incorporating object based thinking into the design of your applications. The rate
of change in business today is faster than it has ever been, and all indications are that in the future,
change will occur even more rapidly. If your development cycles are still measured in years, then the
applications you are developing will be obsolete before they are ever deployed. Not obsolete in terms
of the technology they use -- you can always live with systems that aren’t on the bleeding edge of
technology -- but obsolete in terms of being able to meet business requirements, a far more damaging
limitation that you simply cannot accept.

Object technologies help you meet the business need of being able to re-engineer your applications to
meet changing business conditions. A set of well-defined objects can be implemented once, and will

The Legacy Continues: MPE/iX in an Open Systems World
4016 - 15

persist with only minor changes through a number of re-engineering cycles. These business objects,
which change little, are accessed through applications which can be rapidly deployed through the use
of high-productivity development environments such as Visual Basic. The front-end applications can
be revised or completely redeveloped as often as need dictates, while the business-critical data
contained in the objects remains stable.

Why Client/Server is a key technology for today’s software architectures

There are several trends driving the current push toward client/server architectures. As with the
trends driving the market toward object-oriented development, these trends show no sign of slowing.
If your current development activities do not include any support for client/server architectures, you
are almost certainly creating a competitive disadvantage for your business.

The most visible trend is the evolution of user interfaces to graphical, window based systems. The
display devices required for these types of interfaces -- bit-mapped displays -- are not directly
supported by the HP 3000, so if you want such an interface for your MPE applications, client/server is
the only alternative. Furthermore, even if the hardware didn’t require such an architecture,
performance demands make it far more economical. Block-mode interfaces such as MPE’s VPLUS
or IBM’s CICS place very little processing demand on the system, allowing a single system to support
a large number of users with excellent response times. Character-based interfaces such as the UNIX
curses system are far more CPU intensive. This is a primary reason why large UNIX installations
almost always include some flavor of client/server architecture; the load created by of hundreds of
character-mode users cannot be handled by even the largest available CPUs. Graphical interfaces,
such as Microsoft Windows or OSF/Motif, represent another significant increase in processing
requirements, such that a dedicated CPU per user is the norm for these systems. Thus, the demand
for these graphical interfaces requires a move to a client/server design. We frequently hear requests
from users to add more “GUI-like” features to VPLUS; for example, drop-down selection lists. Users
want these capabilities made available on terminals so that they can provide a more modern user
interface without incurring the expense of upgrading users to personal computers. Ironically,
however, such capabilities will not avoid the need for such an upgrade, but rather accelerate it. These
changes would make VPLUS far more CPU intensive, making it necessary to either upgrade the host
system or move to a client/server configuration so that user interface processing could be offloaded
from the CPU.

A second driving factor is, once again, the increasing rate of change required to meet business needs.
Because of business changes, a company may require a new application, only to find that the
application doesn’t run on the current hardware platform(s). Users may demand new office
automation or decision support tools that require changes in desktop systems. These needs can only
be met by bringing in new hardware. But it is not economical to convert all of the existing software
to the new platforms. Instead, what is needed is a way for the various platforms to interoperate.
Users can have the desktop system that best meets their needs; legacy applications can continue to run
on the system best suited to support them; and new applications can be deployed on the platform
which makes the most sense. Only through client/server technology can these systems be integrated
into a cohesive “system” from the user’s point of view, rather than a collection of incompatible
systems.

Bibliography

Material for this paper was extracted from the book “The Legacy Continues: Using the HP 3000 with
HP-UX and Windows NT”, by Mike Yawn, George Stachnik, and Perry Sellars; Prentice-Hall, 1996.

