
Programming Multiprocessor Machines

Greg Astfalk

Hewlett-Packard Company

Convex Division

PO Box 833851

Richardson, TX 75083{3851

astfalk@rsn.hp.com

Introduction

Reasonably achieving the solution to today's demanding computational problems often

exceeds the capabilities of a single computer processor. The concurrent use of multiple

processors on a single problem, parallel processing in today's vernacular, can often

overcome the shortfall in performance of the single processor. The programming task of

coordinating multiple processors to solve a computational problem is signi�cantly more

di�cult then programming for a single processor. It is the parallel programming issue

that we discuss here.

The complete endeavor of using a computer, parallel or sequential, to achieve a solution

to a problem encompasses several steps. The major steps are;

� conceptual statement of the \physics,"

� formalized mathematical statement,

� algorithm(s),

� computer program (i.e., code),

� mapping code to computer architecture,

� tuning for better performance,

� debugging to achieve correctness,

� execution for solution.

In the above list we have placed physics in quotes since the problem need not be re-

stricted to classic physics. As an example, the problem might be sorting a database. All

but the �rst two items are a�ected when parallel computation is being sought. From

the user's perspective all these steps are important, however it is beyond the scope of

this paper to cover each of them. Our focus is on the computer program itself and how

it speci�es concurrency in order to involve multiple processors.

The machines of interest in HPC (high-performance computing) are all parallel pro-

cessors. Parallel processors come in many
avors. The machine could be a parallel

vector processor (PVP), symmetric multiprocessor (SMP), scalable parallel processor

(SPP), massively parallel processor (MPP), cluster of SMPs, or a network of worksta-

Programming Multiprocessor Machines

2045{1

tions (NOW). Each of these \architectures" has distinct features, some of which are

advantageous for the programmer and the applications, and other features which work

against the application's performance. To some extent the content of this paper is

generic to, and spans, all of these diverse architecture types.

The overall e�ort of developing, tuning, and debugging a computer code is a human-

intensive and time-consuming task. For most organizations, human time is more expen-

sive (i.e., valuable) then machine time. This facet must enter into the considerations of

how long it takes to complete all the items in the above list. This is also true in the

parallel programming phase which is the topic of this paper.

Despite the parallel computing literature's propensity to cite speedups, parallel e�-

ciency, CPU time, isoe�ciency, and a litany of other measures, there is only one thing

that matters; less elapsed wall-clock time. This is measured from the start of the appli-

cation to the termination of the application. If a parallel program does not achieve this

then it is simply not worth doing it in parallel.

Achieving Parallelism

The goal of parallel programming is to take an application code, or equivalently an

algorithm, and cause portions of the computation to occur concurrently across a multiple

number of processors. This working de�nition of parallelism applies to any architecture,

any computation, and to any number of processors. Ideally we would like all of the

computations to be independent so that we completely avoid any serial work. This is

an ideal that is unreachable in practice.

There are several programming methodologies for achieving concurrency, independent

of the programming language used. In no particular order, the methodologies are:

� explicit message-passing,

� compilation with vendor speci�c directives or pragmas,

� compilation invoking automatic parallelization,

� explicit parallelization via programming with threads,

� using a explicitly parallel language,

� explicit process-based parallelization.

All these methods can provably achieve parallelism. Which to choose is a nontrivial

exercise. The ease of use of the method must be weighed against the amount of paral-

lelism that can be achieved and against the amount of programming e�ort required. All

of this must be done in the context of how often the resulting code will be used. There

is little overall gain in spending weeks on parallelizing a code that only needs to be run

a few times. Finally, there is the architecture and the application itself that must be

considered in making the decision for a particular parallelization method to use. Not

all architectures support all of the methods listed above. This might make the decision

Programming Multiprocessor Machines

2045{2

for you. The application a�ects the choice of method indirectly through its inherent

parallelism. This is often characterized by its so-called \granularity."

Latency and Granularity

Latency is not directly related to parallel programming. Given this, then why a discus-

sion of it in this paper? The reason may not be obvious but both latency and granularity

a�ect the parallel programming method.

Latency is the time delay between the request for a data item and the actual receipt of

the data. This is most often considered a hardware issue. Latency is so important to

performance that it can not be ignored. Additionally, the actual latency incurred is a

function of the programming model used.

Before considering its implication(s) on the programming model it is appropriate to

quantify some hardware and software latencies. The approximate latencies for the

memory hierarchy of contemporary machines are shown in Table 1. It is important

to understand that the latency should be measured, and viewed, relative to the host

processor's clock cycle, rather then time. The reasoning behind this is that the e�ect of

latency is generally lost opportunity to perform useful work. Work is measured by the

number of lost processor cycles. The clock frequency of the di�erent processors on the

market today, and in parallel machines, can vary by a factor of 4 or more. Normalizing

latency to the processor cycle time is more meaningful.

Level Processor

clocks

register 1

primary (L1) cache 2{3

secondary (L2) cache 6{20

tertiary (L3) cache 14{25

local memory 20{200

remote shared memory O(102)

message-passing O(103){O(104)

secondary storage (disk) O(104){O(107)

Table 1: Approximate latencies for contemporary machines. Note that the latencies are

given in terms of processor clocks rather than time.

If we consider the latency of local memory compared to message-passing we can see

the e�ect of the choice of programming model on performance. In the case of message-

passing the size of the parallel task's computation must be larger then the \equivalent"

in shared-memory by a factor of 100 to 1000 to achieve comparable e�ciency.

Programming Multiprocessor Machines

2045{3

Even when working on the so-called NUMA (nonuniform memory access) machines the

di�erence in latency between local memory accesses and remote memory accesses is large

enough that it should be considered in coding for optimal performance. The choice of

architecture and programming method will have an e�ect on the resulting performance.

The latency of the architecture and the latency in the programming method used to in-

voke parallelismmust be considered in the context of the inherent, or at least achievable,

parallelism in the application. It is counterproductive to attempt to use a high latency

programming approach for an application that only o�ers small pieces of parallel work.

Granularity refers to the amount of computation that takes place between parallel over-

head events. The terms �ne-grained and coarse-grained are often used in talking about

parallel algorithms and codes. We consider parallel overhead events to be communica-

tions and synchronizations between the parallel tasks and also the management of the

tasks themselves (i.e., starting and stopping them). There is no precise de�nition for

what is �ne-grained vs. coarse-grained. The rule of thumb is that if the grain-size is a

few tens of machine instructions or on the same order as the smallest parallel overhead

it would be considered �ne-grained. Conversely an algorithm that can do several thou-

sands or millions of instructions between parallel overhead or has a grain-size that is

some \large" multiple of the parallel overhead event time is considered coarse-grained.

Note that this de�nition allows for an application to be �ne-grained on one machine but

coarse-grained on another machine.

In an absolute sense we always seek to develop algorithms that are coarse-grained. This

simply better amortizes the overhead of the parallelism. Even an architecture that is

capable of handling �ne-grained code e�ciently would perform better if it were given a

coarse-grained application. Having just stated this we now temper it slightly by noting

that coarse-grained applications can expose a negative aspect of parallel processing.

Load-balancing can severely a�ect the overall performance of parallel applications. If

the size of the coarse-grained threads are too disparate then it could result that all

processors are awaiting a single long-running thread to complete. Naturally this wastes

resources while the (n�1) processors are idle. A \pool" of �ne-grained threads does not

have this type of degradation, at least not to the extent that coarse-grained applications

do.

The actual development of coarse-grained algorithms is beyond the scope of this paper.

There exists a large volume of published literature on this topic. A few suggested

books for understanding parallel algorithms are [1, 3, 10, 11, 13, 14]. There are many

others, not to even mention the vast number of published journal articles and conference

proceedings.

Programming Multiprocessor Machines

2045{4

Parallel Programming

As we had stated earlier the goal of parallel computers is to either do an existing problem

with lower time-to-solution, or to permit larger and more complex problems than can be

achieved on a sequential computer. In either case it is necessary to achieve concurrency

in the volume of computations that make up the task. In the common vernacular, and

in the remainder of this paper, we will refer to a stream of execution as a thread. This is

an overloaded term but we take it to mean some set of computations that is proceeding

on a processor at the same time that other threads are executing on other processors.

There is no requirement that the threads be executing the same instructions, operating

on the same data, or take the same amount of time to complete their work. The only

overt requirement in the context of this paper is that some of these threads are executing

concurrently.

We will see in a later section that there is a programming methodology called thread-

based programming. It will be clear from the context which meaning of the word

\thread" we are using.

Achieving the concurrency in the task's execution requires that the work, or data, of the

task be divided among the participating threads. The approach taken in almost all cases

of parallel programming can loosely be stated as, \divide, conquer and communicate."

The \division" is either done on the data that makes up the application or on the tasks

within the application. While the data itself is not visible to the compiler, it is implicitly

present in the form of the language constructs that declare, allocate, and operate on

the data.

The \conquering" portion is the assignment of the threads to the processors of the par-

allel system in order that they can concurrently operate to reduce the time to solution.

The sometimes di�cult issue of load balancing is part of the conquer phase. If the

threads are doing di�erent amounts of work then at some point many threads will need

to wait for the longest running thread to complete. Load-balance can have a signi�cant

e�ect on the time-to-solution.

The \communicate" phase involves two major parts. First, is just what the name

implies, the communication that takes place between threads in order to exchange or

update data that each either has, or needs. Additionally, the threads need to synchronize

their execution. This often occurs in the form of reduction to single threaded execution

or the rendezvous of all threads before any, or all, can proceed.

In the following sections we make more explicit the di�erences in the various means by

which parallelism can be achieved.

Programming Multiprocessor Machines

2045{5

Automatic parallelization

Automatic parallelism is achieved by no work on the part of the user other than compi-

lation with a particular compiler
ag (i.e., option) enabled. Users deservedly want this

approach to parallelism to be the best choice. Obviously, it is only the best choice if it

o�ers acceptable parallel performance.

Compiler produced automatic parallelization is generally con�ned to the loops and loop-

nests within the application. Often this has insu�ciently coarse granularity to be prof-

itable across more than a few processors. Automatic parallelization was better suited

to PVP machines since they o�er lower parallel overhead and better synchronization

facilities. With this advantage automatic parallelization at the loop level was often

pro�table. Owing to market and economic pressures RISC-based systems are replacing

the PVPs. With RISC-based systems comes larger parallel overhead thereby increasing

the di�culty of achieving pro�table automatic parallelization based solely on loops and

loop-nests.

In order for a compiler to generate parallel code it must emit the requisite instructions

to spawn the multiple, concurrent threads of execution and it must also produce code

to join the threads at the end of the parallel work. In virtually any real application this

will be repeated many times during the course of the application's execution. Compilers

have no trouble with this aspect. What is di�cult is that in order to get correct results

the compiler must determine all the dependencies among the data in the various threads

that it creates and generate correct parallel code. The dependency analysis is the most

di�cult part.

Today, generally speaking, the available technology permits loops and loop-nests to be

analyzed and parallelized quite well. This does not necessarily translate directly into

improved performance, as we will see momentarily. The ability to perform the requisite

dependency analysis across procedures is available but it is not nearly as developed or

robust as that for loops. Automatic parallelism across or involving procedures o�ers

the possibility of much coarser grained parallelism than just loops and loop nests. Even

given the inter-procedural dependency analysis the code transformations required to

translate this into correct parallel code are not well developed. This is an area that

is under study by a number of groups. Industrial strength inter-procedural optimizing

compilers that can, with high probability and minimal user interaction, deliver good

parallel performance are simply not available at this time.

With only loops and loop-nests as the engines of parallelism we should explore what

opportunity they present for parallelism. The answer to this is not all that encouraging.

In Figure 1(a) we show the CPU time used by each of 21,000 loops contained in 127

real applications [2]. In Figure 1(b) we show the same CPU times1 but only for those

loops that are automatically parallelizable by a competent, contemporary automatically

1
What we are saying is that the times in Figure 1(b) are the sequential times, not parallel times.

Programming Multiprocessor Machines

2045{6

(a) (b)

Figure 1: (a) The processor time used in all 21,000 of the loops in 127 real application

vs. the loop span. (b) The same data for only those loops that can be automatically

parallelized by a contemporary production parallelizing compiler.

parallelizing Fortran compiler. The key fact revealed in these plots is that the CPU

time for automatically parallelizable loops is, in an absolute sense, quite low. This is

especially true when it is understood that the CPU time shown is for all iterations of

the loop. When a loop is done in parallel, the range of the induction variable is divided

among the participating processors. Naturally, this further reduces the CPU time per

processor. Given that the overhead to \go parallel" is non-zero it becomes di�cult to

expect automatic parallelism of loops to provide a big win for the end-user.

It is this author's opinion that users should not expect too much parallel performance

from automatic parallelization. If the number of processors is restricted to 2{4 and the

memory is shared then in some cases this can be of bene�t. In a general setting however

the granularity of loops, especially those for which a compiler can perform dependency

analysis (i.e., without procedure calls) is too small to achieve any reasonable parallel

e�ciency. Note that any loop containing a procedure call is generally not a candidate

for automatic parallelization. This would require interprocedural dependency analysis.

Shared-memory directives

Each vendor of a shared-memory, or global-shared-memory (GSM), parallel system o�ers

some vendor speci�c directives (in Fortran) and pragmas (in C) to explicitly control the

compilation process. These directives can be used to give relatively simple directions to

the compiler, or they can perform rather complex tasks such as parallelization.

As a speci�c example, consider that every vendor o�ers a directive to force a loop to

be parallelized. When using such a directive the onus to insure correctness is on the

user. The directive is, in almost all cases, a speci�c command that tells the compiler,

\I know what I want, you just produce it." The compiler will then do exactly that.

Programming Multiprocessor Machines

2045{7

The user must be aware of any data dependencies or required synchronizations within

the scope of the loop. In practice this directive often shows up on loops that contain

procedure calls. Since the compiler can not generally do full dependency analysis across

all the invoked routines it will not be able to automatically parallelize the loop, hence

the explicit use of a directive.

Using directives is a mechanism to produce rather sophisticated parallel code. However,

there is a disadvantage. At this time there is no standard, ad-hoc or sanctioned, for

shared-memory, parallel directives. Each vendor o�ers their own set of directives. There

is also no standard for the syntax of the directives or pragmas. Admittedly there is

a large degree of commonality and the mapping between vendor A's and vendor B's

directives is not too di�cult.

As a speci�c example of pragma induced parallelism consider:

#pragma _CNX loop_parallel(ivar=i)

for (i=0 ; i<n ; i++)

a[i] = b[i] * c[i];

This pragma does signi�cant work for the user despite its simple appearance. The code

that the compiler generates will spawn the requisite number of threads, it will determine

which subset of the loop iterations get handled by each thread, and it will place a barrier

after the loop to insure that only a single thread continues. This preserves the sequential

semantics of the code following the parallel loop, or more generally, any directive de�ned

parallel construct.

There is a signi�cant fraction of users that use directives to accomplish their parallel

needs. From the end-user perspective directives are quite a productive tool since the

burden placed on the user's time is quite small and the compiler, which is good at

such things, does the tedious work of producing the parallel code. Remember that the

correctness of the parallelism when pragmas are used is now the user's responsibility.

Other types of tasks that can be accomplished via directives are to de�ne regions of

parallel code, to select the type of scheduling or partitioning of the loop induction

variable, de�ning critical sections, privatizing variables and arrays, and quite a few

other tasks related to parallelism.

In contrast to automatic parallelization the use of directives requires some involvement

on the users part. Pragmas and directives do o�er signi�cant leverage in that they cause

a fairly signi�cant code expansion that the user need not be concerned with. Directives

tend to bring the tedium of parallel programming more to the level at which the user

thinks. Naturally this is a good thing.

Programming Multiprocessor Machines

2045{8

Explicit parallelism via threads

A thread is an entity that the operating system manages which is comprised of a set

of instructions that are sequentially executed by a processor. In addition the thread

has associated with it various resources such as private storage, attributes that may be

speci�ed by the programmer, register context, stack, and �le descriptor information (�le

descriptors are owned by the process but shared by the threads). The actions required by

the application's threads are achieved through procedure calls to thread library routines.

Thread capabilities allow the programmer to exert very speci�c and �ne control over

the management of the threads. The most pervasive thread library today is the POSIX

threads library. In practice POSIX threads is only an API de�nition [8]. Each vendor or

developer of a POSIX thread implementation builds the library itself. POSIX threads

are most commonly referred to as pthreads.

Doing explicit thread programming is de�nitely a lower-level approach than the use of

compiler directives. For the price of more programming and attention to detail threads

o�ers the user more explicit control of the parallelism and the ability to perform tasks

that may not be achievable via the compiler directives.

To severely generalize the spectrum of what thread programming can o�er you can

consider that the tasks to perform are to create a thread, to (possibly) synchronize

threads with each other, to de�ne regions of mutual exclusion (i.e., critical section), and

to terminate threads. Clearly there is much more to threads then this short list. A very

readable account of programming with pthreads is [12].

To create a thread requires a single procedure call. Neglecting the requisite declarations;

ret_val = pthread_create(&thread_id ,

(pthread_attr_t *) NULL ,

thread_procedure ,

(void *) NULL);

In this example the pthread create procedure does just that; creates a thread which

begins execution at the procedure thread procedure. thread procedure is a regular

C procedure. Each of the created threads will begin execution at the entry point to

this procedure. The di�erent execution paths or data to be operated on is generally

controlled via the procedure's arguments. The user is given a thread ID in the �rst

argument so that this particular thread can be identi�ed.

In order to terminate a thread it is generally true that you don't need to do anything.

When the threaded procedure returns the thread itself is terminated by an implied call

to the pthread exit procedure.

What is relatively common is the need to synchronize threads. The mechanism for doing

this is an object called a mutex. Mutex stands for \mutual exclusion." A mutex can be

Programming Multiprocessor Machines

2045{9

in one of two states; either locked or unlocked. Its mutual exclusion property permits

only one thread to have it in a locked state. If any other thread attempts to lock an

already locked mutex it will not succeed. Only when the holding thread releases, that

is unlocks, its mutex can another thread then lock it.

The following procedures will initialize a mutex, lock the mutex, and unlock the mutex.

int pthread_mutex_init(pthread_mutex_t *mutex ,

pthread_mutexattr_t *attribute);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Naturally there is much more to the pthreads API that allows for very sophisticated

programming. Handling of signals, scheduling the threads, waiting on conditions,

semaphores, cancellation of threads, and much more is available.

When doing thread-based programming the user needs to explicitly attend to every

detail. The compiler is only producing sequential code and the calls to the thread library

are the driver of parallelism. The most di�cult aspect of thread-based parallelism is

getting it right (no surprise). The point is that threads live in a shared address space.

Thus any given thread can step on a variable without the expressed permission of any

other thread. Often the shared address space is a distinct advantage. However, it can

lead to data inconsistencies and also to race or deadlock conditions.

To illustrate the dark side of thread programming we illustrate a case where the appli-

cation can get into a dead-lock. Dead-lock occurs when each of two threads are awaiting

resources, such as mutexes, that are held by the other thread. This generalizes to either

one or many threads. Speci�cally, consider the case where thread 1 locks mutex mutxA

and then thread 2 locks mutxB. Now, without releasing mutxA thread 1 attempts to lock

mutxB and thread 2 attempts to lock mutxA, without releasing mutxB. At this point both

threads are dead-locked awaiting a resource, the mutexes, that is not releasable by the

holder of the resource. While this simple example seems easy to detect it is not the

case in a code of many thousands of lines of source with many threads interacting in

complex ways.

Message-passing

Message-passing code can be considered (at the time of this paper) as concurrently

executing processes that exchange information via \messages." The mechanism for

the message-passing is through message-passing libraries. At this time there are two

Programming Multiprocessor Machines

2045{10

dominant libraries; MPI (message passing interface) [6] and PVM (parallel virtual ma-

chine) [5]. Both of these libraries are available on essentially every parallel computer

system to which you can gain access.

Message passing is similar to thread programming. The user explicitly codes all of

the parallel actions that are required. In most cases this is the sending and receiving of

messages containing the application's data that must be shared among the participating

processes. Since the processes are separate they do not share an address space so that

anything that needs to be known to any other process must be passed via a message.

Each message is coded by the programmer.

Consider the following (nonsensical) fragment of code:

MPI_Init(&argc , &argv);

MPI_Comm_size(MPI_COMM_WORLD , &num_procs);

MPI_Comm_rank(MPI_COMM_WORLD , &my_id);

if (my_id == root_node) {

for (tag=1 ; tag<num_procs ; tag++)

ret = MPI_Recv(&a[chunk*tag] , chunk , MPI_DOUBLE ,

MPI_ANY_SOURCE , tag , MPI_COMM_WORLD , &stat);

}

if (my_id != root_node)

ret = MPI_Send(&a[chunk*my_id] , chunk , MPI_DOUBLE ,

root_node , my_id , MPI_COMM_WORLD);

MPI_Finalize();

In the case of MPI the processes to be involved in the parallel computation are cre-

ated one-time only at the beginning of the parent process' execution. With our goal

for parallel processing|reduced time to solution|this overhead should be taken into

account. Message-passing has relatively high latency for communication. In order to

achieve e�cient parallel execution with message-passing requires that there be coarse

granularity. This is either inherent in the application or algorithm or the programmer

must get clever to avoid excessive message tra�c. A positive side-e�ect of message-

passing is that it forces you to \do the right thing" regarding the decomposition of the

applications data or functionality.

Explicitly Parallel Language

There are a great many explicitly parallel languages. Perhaps the most often mentioned

one is High Performance Fortran (aka HPF) [7, 10]. These explicitly parallel languages

Programming Multiprocessor Machines

2045{11

have parallelism inherent in the semantics of the language. This includes the manage-

ment of the parallel threads of execution and the distribution of data in the systems

processor and memory topology.

To make this more explicit consider the following fragment of HPF code.

!HPF$ PROCESSORS procs(128)

real*8 my_data(4096)

integer pntrs(4096)

!HPF$ DISTRIBUTE my_data(BLOCK) onto procs

!HPF$ DISTRIBUTE pntrs(CYCLIC)

The HPF constructs begin with the \!HPF$" directive. The PROCESSORS directive spec-

i�es a topology of processors. This topology is abstract in that it need not match the

architectural topology of the host system. (However, an HPF compiler is only required

to accept processor arrangements that specify the number of physical processors avail-

able or 1 processor.) In this speci�c example we \de�ne" a linear set of processors. The

DISTRIBUTE directive is an instruction to partition an array onto the abstract topology

of processors. Note that in the DISTRIBUTE directives the arrays are followed by an

attribute specifying how to distribute the data. In the case of a BLOCK distribution

the array is partitioned among the processors in blocks of size N=P where N is the

size of the array and P is the number of processors. The CYCLIC directive causes the

partitioning to be done cyclically across all the processors, every P -th element of the

array will be mapped to the same processor

It is generally accepted, at least in this author's experience, that HPF is most appro-

priate for codes that are being written from scratch. Attempting to retro�t existing

Fortran-77 codes to HPF is a di�cult and time-consuming task. HPF also o�ers no

support for irregular problems or task management. These issues are being addressed

in the HPF-2 forum that is currently working.

With the limited space we have available we can not possibly do justice to this topic.

We mention that (in this author's experience) the next most often mentioned explicit

parallel language is Split-C [4].

Process Parallelism

There are a few notable and highly used codes that achieve their parallelism by way of

Unix processes. The parallel threads in this case are Unix processes that are fork-ed

or exec-ed by the sequential parent process. Communication is accomplished by one

of two methods. The \shared-memory" mechanism that Unix provides allows separate

Unix processes to share a common piece of virtual address space. It is important to

note that this \shared-memory" is not the architectural shared-memory that we more

Programming Multiprocessor Machines

2045{12

Methodology Pro Con

Automatic

� very easy to do

� avoids subtle bug introduc-

tion

� limited applicability

� low performance potential

Pragmas

� easy to use

� adequate coverage

� ignored comments to other

systems

� not standard

� shared-memory only

� not all possible required

parallel tasks covered

Threads

� low overhead

� complete functionality

� standardized

� amount of programming

� shared-memory only

� care to avoid nondetermin-

ism

Message-passing

� most standard method

� well developed

� \requires"

a reasonably correct decom-

position

� high overhead

� (possibly) lots of program-

ming

Parallel language
� ease of use

� expressiveness

� longevity of language

� multi-platform support

� e�ciency of code

Process parallelism
� only uses standard Unix

� can be heterogeneous

� huge overhead

� some system level pro-

gramming

Table 2: A brief summary of the points for and against the common parallel program-

ming methodologies.

commonly consider. It is often referred to as System-V shared memory or mmap. The

individual Unix processes can also communicate with each other via the standard Unix

socket mechanism. The key points here is that heavy-weight Unix processes are involved

and Unix process-based communication mechanisms are used. In each case the latency

is rather large so the parallelism that is exploited by this methodology must be very

coarse-grained. If this is not the case then the parallel performance will be quite poor.

Epilogue

There are a few safe, that is to say non-controversial, statements that we can make

to attempt a summary of this paper. For those machines that have shared-memory

message-passing is often used within the shared-memory domain. Automatic parallelism

and directive/pragma assisted parallelism seem to be used slightly more often on this

type of architecture. Thread programming is, like C++ and Fortran-90, increasing its

presence in high-performance programming.

For the distributed-memory machines message-passing is (obviously) the programming

Programming Multiprocessor Machines

2045{13

method of choice. While there is no true standard it is clear that both PVM and MPI

are the most widely used. It is this author's expectation that MPI will become the more

prevalent library in the future.

With full awareness of the possible misinterpretation of a succinct table summarizing

the major points made earlier in the paper, we do exactly that in Table . Obviously

brevity is required in the table but the signi�cant points regarding the parallel methods

are listed.

Message-passing is a method that, in spite of its detractors, will be heavily used for some

time to come. It does o�er the highest degree of portability of any parallel programming

method available today. Almost any machine that is available today supports both the

MPI and PVM libraries. The choice between the two is largely dictated by the needs

of the application or the machine environment that will be utilized for the calculation.

This bene�t comes at a steep price however, this being the high communication latency

and (relatively) low communication bandwidth.

Sage advice to anyone beginning a software project is to think through the consequences,

constraints, bene�ts, and long-term side e�ects of the choice of parallel programming

method. The programming language itself is less of an issue and more a matter of picking

the right language for the particular task and also one of personal taste. The parallel

programming method has larger consequences so think of the long-term rami�cations

and choose wisely.

Acknowledgments

I am glad to have the opportunity to thank my colleague, Joel Williamson. My many

discussions with him over the years on programming and models for parallel program-

ming have been insightful and illuminating.

References

[1] G.S. Almasi and A. Gottlieb, Highly Parallel Computing,

Benjamin/Cummings, Redwood City, 1994.

[2] G. Astfalk, Hewlett-Packard Company, Richardson TX, unpublished work, 1996.

[3] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computing, Pren-

tice Hall, Englewood Cli�s, 1989.

[4] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S.

Lumetta, T. von Eicken, and K. Yelick, Parallel programming in Split-C,

Proceedings of Supercomputing '93, Portland, OR, November 15{19, 1993, pp:

262{273.

Programming Multiprocessor Machines

2045{14

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.

Sunderam, PVM: Parallel Virtual Machine|A Users' Guide and Tutorial for

Networked Parallel Computing, MIT Press, 1994.

[6] W. Gropp, W. Lusk, and A. Skjellum, Using MPI: Portable Parallel Pro-

gramming with the Message-Passing Interface, MIT Press, 1994.

[7] High Performance Fortran Forum, High Performance Fortran language spec-

i�cation, version 1.0, Technical Report CRPC-TR92225, Center for Research on

Parallel Computation, Rice University, Houston, TX, 1993.

[8] IEEE Standard for Threads Interface to POSIX, IEEE Draft Standard

P1003.1c/D10, IEEE, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331.

[9] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel, The

High Performance Fortran Handbook, MIT Press, 1994.

[10] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel

Computing, Benjamin/Cummings, Redwood City, 1994.

[11] S. Lakshmivarahan and S.K. Dhall, Analysis and Design of Parallel Algo-

rithms, McGraw-Hill, New York, 1990.

[12] S.J. Norton and M.D. DiPasquale, Thread Time: The Multithreaded Program-

ming Guide, PTR Prentice Hall, Englewood Cli�s, to appear, 1996.

[13] J.M. Ortega Introduction to Parallel and Vector Solution of Linear Systems,

Plenum Press, New York, 1988.

[14] E.F. Van de Velde, Concurrent Scienti�c Computing, Springer-Verlag, New

York, 1994.

Programming Multiprocessor Machines

2045{15

