
Converting rc scripts for 10.x
2160-1

2160

Converting rc scripts for 10.x

Dillon Pyron

Advanced Micro Devices, Inc.

6800 Burleson Rd, Bldg 312 M/S 606

Austin, TX 78741

512 602 2368

Until it starts, a computer is just a bunch of expensive components, in a neat little box. And the OS is
just magnetic anomalies on a disk. So, startup is a critical part of a computer’s life. In Unix, the
startup is arranged so that we can control various portions of the software configuration and how it will
deal with the external hardware. In previous releases of HP-UX, this was handled by a script known as
rc, which contained significant portions of the startup code, and called other related scripts for
specialized functions such as networking.

Under HP-UX 10.x, however, this structure has changed. As HP has embraced the SVR4 model more
closely, we find a startup with more structure, modularity and maintainability. As well as one that is
clearer. Gone is the monolithic rc. In it’s place is a trim rc script that calls execution scripts as needed.
The execution scripts each have their own config files. By editing the config files, the sys admin can
control the behavior of the execution scripts, without having to edit (or understand) the scripts. More
important, new software can be “plugged in” without perturbing existing installations.

The rc we all knew and despised is gone. And the new rc is in a new location. All of the startup scripts
can be found under the /sbin directory. In fact, during startup, /sbin is one of the few directories that
can be guaranteed to be available. Also of interest in /sbin are the directories rc{0-4}.d and init.d. The
rc{0-4}.d directories are call “link” directories, because the files in them are actually links to the
execution scripts, which are located in init.d. (Fig. 1)

rc2.d:
lrwxr-xr-x 1 root sys 16 Jul 22 1996 S008net.sd -> /sbin/init.d/net
lrwxr-xr-x 1 root sys 21 Jul 22 1996 S100swagentd -> /sbin/init.d/swagentd
lrwxr-xr-x 1 root sys 21 Jul 22 1996 S120swconfig -> /sbin/init.d/swconfig
lrwxr-xr-x 1 root sys 21 Jul 22 1996 S200clean_ex -> /sbin/init.d/clean_ex
lrwxr-xr-x 1 root sys 23 Jul 22 1996 S202clean_uucp -> /sbin/init.d/clean_uucp
lrwxr-xr-x 1 root sys 23 Jul 22 1996 S204clean_tmps -> /sbin/init.d/clean_tmps
lrwxr-xr-x 1 root sys 22 Jul 22 1996 S206clean_adm -> /sbin/init.d/clean_adm
lrwxr-xr-x 1 root sys 20 Jul 22 1996 S220syslogd -> /sbin/init.d/syslogd
lrwxr-xr-x 1 root sys 22 Jul 22 1996 S230ptydaemon -> /sbin/init.d/ptydaemon
lrwxr-xr-x 1 root sys 18 Jul 22 1996 S300nettl -> /sbin/init.d/nettl
lrwxr-xr-x 1 root sys 20 Jul 22 1996 S320hpether -> /sbin/init.d/hpether
lrwxr-xr-x 1 root sys 16 Jul 22 1996 S340net -> /sbin/init.d/net
lrwxr-xr-x 1 root sys 18 Jul 22 1996 S370named -> /sbin/init.d/named
lrwxr-xr-x 1 root sys 21 Jul 22 1996 S400nfs.core -> /sbin/init.d/nfs.core
lrwxr-xr-x 1 root sys 23 Jul 22 1996 S410nis.server -> /sbin/init.d/nis.server
lrwxr-xr-x 1 root sys 23 Jul 22 1996 S420nis.client -> /sbin/init.d/nis.client
lrwxr-xr-x 1 root sys 23 Jul 22 1996 S430nfs.client -> /sbin/init.d/nfs.client

Fig. 1

Converting rc scripts for 10.x
2160-2

The link scripts have a simple naming convention that must be observed to make things function
properly. Within each run level (as denoted by the directory), lower number scripts are executed first
on startup, and last on shutdown. After this comes the subsystem name, which is usually the same as
the execution script name. This is seen in Fig. 1. Which scripts are run are startup and shutdown is
discussed below.

At this point, most readers are starting to watch the room spin, so let’s take a quick look at a skeletal
startup. The purpose here is not to describe a startup in detail, but rather, to list the elements of one for
further discussion.

In /etc/inittab, there is an entry for the sequencer (/sbin/rc):

sqnc::wait:/sbin/rc </dev/console >/dev/console 2>&1 # system init

At this point, /sbin/rc starts up and determines its environment. We are assuming system startup,
although it can also be called for transitions between run-levels on a running system. It identifies the
target level, and collects a list of all of the scripts to run. It is at this point that the checklist is printed.
(Fig 2) Now rc starts executing the scripts. It does this in order of level, and then based on sequence
number inside each level. For instance, syncer (in rc1.d) is started before nis client (in rc2.d). (Fig 3)
And, nis client is started before nfs client, due to sequence numbers. (Fig 3)

HP-UX Start-up in progress

Mount file systems . [OK]
Setting hostname . [OK]
Set privilege group . [N/A]
.
.
.
Start the snoopy daemon . [Fail]

Fig. 2

The sequence numbers have a particular form and function. Each component has an entry in the
appropriate run level directory, with either a start (S) or kill (K) indicator, followed by a number which
indicates its relative position in the start/stop process. In the above example, nis client is S420nis.client
and nfs client is S430nfs.client. (Fig 3) So nis client is executed first.

As each component is executed in sequence, rc changes the status in the checklist display to reflect
state of the execution script. This status consists of OK (in green on color monitors), FAIL (in red),
N/A (in yellow) and an alternating BUSY/WAIT (also in yellow). When a script completes, it returns
a value 0 to indicate success, a 1 to indicate a failure and a 2 to indicate that the script skipped
execution.

Now that we have a basic understanding of the mechanics, let’s take a look at how to write a
functional, compliant startup script for your own component. As stated above, the entries in the rc*.d
directories are just links to the actual execution scripts in init.d. This execution script needs to handle
one of four input parameters, start_msg, start, stop_msg and stop. Of these, start_msg and stop_msg
simply print a message (the checklist display) to the console. Notice that, if there is not an entry to
start (S) or kill (K) a component, then there will not be a checklist display for that component.

Converting rc scripts for 10.x
2160-3

rc1.d:
K186pv K380xfs K440SnmpMaster K580nis.client S100hfsmount
K230audio K390rbootd K450ddfa K590nis.server S320hostname
K240auditing K400i4lmd K460sendmail K600nfs.core S400set_prvgrp
K270cron K410ncs K470rwhod K630named S420set_date
K280lp K420dfs K480rdpd K660net S440savecore
K290hparray K430dce K490gated K700nettl S500swap_start
K300acct K435OspfMib K500inetd K770ptydaemon S520syncer
K340xntpd K435SnmpHpunix K510mrouted K780syslogd
K370vt K435SnmpMib2 K570nfs.client K900swagentd

rc2.d:
K100dtlogin.rc S300nettl S510gated S590ncs S760auditing
K900nfs.server S320hpether S520rdpd S600i4lmd S770audio
S008net.sd S340net S530rwhod S610rbootd S800spa
S100swagentd S370named S540sendmail S620xfs S814pv
S120swconfig S400nfs.core S550ddfa S630vt S820prm
S200clean_ex S410nis.server S560SnmpMaster S660xntpd S880swcluster
S202clean_uucp S420nis.client S565OspfMib S700acct
S204clean_tmps S430nfs.client S565SnmpHpunix S710hparray
S206clean_adm S431amd.client S565SnmpMib2 S720lp
S220syslogd S490mrouted S570dce S730cron
S230ptydaemon S500inetd S580dfs S740supprtinfo

Fig. 3

HP generously supplies us with a template file in /sbin/init.d/template. This provides all of the generic
utilities used by most of the standard execution scripts, as well as a workable structure. The user is
responsible for filling in “the guts”, but this is typically the easiest part, once the boilerplate required to
interface with startup is covered.

There are some rules, or guidelines, to writing your script. Never assume too much. Do not expect
filesystems such as /usr to be mounted. Don’t write messages to the console. This will mess up the
checklist display. Instead, write to stdout and stderr.

One of the additional benefits of this system is that we no longer need to edit the script to modify its
behavior. Instead, the script is affected by variables in config files for each of the execution scripts.
To, for instance, turn off nfs client mode, set the variable NFS_CLIENT to 0 in
/etc/rc.config.d/nfsconf. (Fig. 4) This is not only easier, but safer, the trying to edit a script and get all
of the correct lines. In fact, HP recommends NOT editing the scripts.

#
NFS_CLIENT=1
NFS_SERVER=1
NUM_NFSD=4
NUM_NFSIOD=4
#

Fig. 4

The config files can be sourced in one of two methods. The execution script can source in just its files,
or it can source in /etc/rc.config, which then sources all of the config files. The second method is
recommended for applications, as it guarantees a fully defined environment. The config files are
executed by a POSIX shell, and must be written with that in mind.

To write you own scripts, you will need sequence numbers. For general purpose usage, HP has
assigned /sbin/rc2.d/S900xxxxxx for startup scripts, and /sbin/rc1.d/K100xxxxx for shutdown scripts.
HP may also use these same numbers, so use very distinctive names.

Converting rc scripts for 10.x
2160-4

With these points in mind, the following is a trivial example, which starts an application called snoopy.

#!/sbin/sh
#
@(#) $Revision: 72.11 $
#
NOTE: This script is not configurable! Any changes made to this
script will be overwritten when you upgrade to the next
release of HP-UX.
#
WARNING: Changing this script in any way may lead to a system that
is unbootable. Do not modify this script.

#
This will start the snoopy daemon Put your comments here.
#

Allowed exit values:
0 = success; causes "OK" to show up in checklist.
1 = failure; causes "FAIL" to show up in checklist.
2 = skip; causes "N/A" to show up in the checklist.
Use this value if execution of this script is overridden
by the use of a control variable, or if this script is not
appropriate to execute for some other reason.
3 = reboot; causes the system to be rebooted after execution.

Input and output:
stdin is redirected from /dev/null
#
stdout and stderr are redirected to the /etc/rc.log file
during checklist mode, or to the console in raw mode.

PATH=/usr/sbin:/usr/bin:/sbin
export PATH

NOTE: If your script executes in run state 0 or state 1, then /usr might
not be available. Do not attempt to access commands or files in
/usr unless your script executes in run state 2 or greater. Other
file systems typically not mounted until run state 2 include /var
and /opt.

rval=0

Check the exit value of a command run by this script. If non-zero, the
exit code is echoed to the log file and the return value of this script
is set to indicate failure.

set_return() {
x=$?
if [$x -ne 0]; then

echo "EXIT CODE: $x"
rval=1 # script FAILed

fi

Converting rc scripts for 10.x
2160-5

}

Kill the named process(es).
$1=<search pattern for your process>

killproc() {
pid=`ps -e | awk '$NF~/'"$1"'/ {print $1}'`
if ["X$pid" != "X"]; then

if kill "$pid"; then
echo "$1 stopped"

else
rval=1
echo "Unable to stop $1"

fi
fi

}

case $1 in
'start_msg')

Emit a _short_ message relating to running this script with
the "start" argument; this message appears as part of the checklist.
echo "Start the snoopy daemon" This is the message echoed to the console
;;

'stop_msg')
Emit a _short_ message relating to running this script with
the "stop" argument; this message appears as part of the checklist.
echo "Stopping the snoopy subsystem"
;;

'start')

source the system configuration variables
if [-f /etc/rc.config] ; then

. /etc/rc.config
else

echo "ERROR: /etc/rc.config defaults file MISSING"
fi

Check to see if this script is allowed to run...
if ["$SNOOPY_RUN" != 1]; then Set in the snoopy config file

rval=2
else
killproc snoopyd take advantage of provided utilities

#make sure the daemon isn't already running

/sbin/naughty/snoopy Most of the work is already done, just start the thing!

set_return and return a value of (hopefully) 0 for success.

fi
;;

Converting rc scripts for 10.x
2160-6

'stop')
source the system configuration variables
if [-f /etc/rc.config] ; then

. /etc/rc.config
else

echo "ERROR: /etc/rc.config defaults file MISSING"
fi

Check to see if this script is allowed to run...
if ["$SNOOPY_RUN" != 1]; then

rval=2
else
:
killproc snoopyd
we don’t care if it really succeeds, we’re just trying to be nice

fi
;;

*)
echo "usage: $0 {start|stop|start_msg|stop_msg}"
rval=1
;;

esac

exit $rval

As a note to the observant, the above is an example and would not likely run due to some scripting
problems.

The config file for snoopy, residing in /etc/rc.config.d, look like this:

************* File: /etc/rc.config.d/snoopy ********************
#
SNOOPY_RUN: Set to 1 to start snoopy daemon
#

SNOOPY_RUN=1 This value tells the script to run it

If you are planning on writing scripts that will be used by external (hopefully paying) customers, you
can request a unique startup sequence number from HP. This will also be of value if a) you need to
start prior to run level 3 or b) you need to start prior to other subsystems You can contact the
PA-RISC Developer’s Program at pard@apollo.hp.com.

By following a straightforward set of rules, and taking advantage of the tools and templates provided,
almost all of the conversion work is done, and the resulting scripts will be easier to manage and use.
At the same time, however, you may continue using 9.0x scripts, wrapped in a simple script. This will
allow you to make use of existing scripts, and convert them as the opportunity arises.

Converting rc scripts for 10.x
2160-7

