
MPE Queuing: How It Works, How To Make It Work For You!
4115 - 1

MPE Queuing: How It Works, How To Make It Work For You!

One of the very key concepts to understand when approaching MPE
performance is that of the queuing algorithm used to decide which process
gets to execute on the CPU. It seems that this concept, although once
caught seems easy, can be difficult to catch. I have had numerous requests
to try and explain it in written format as I teach performance classes. So here
goes! I hope you are able to catch it!

What is Queuing?
MPE/iX systems are queuing systems. A queue is defined, in

computer terms, as “a sequence of stored data or programs awaiting
processing.” In the greater sense there are a number of different queues
involved in computer performance. This means that the computer is really a
system of queues. Queues are places where requests for the computers time
must wait for the attention of a resource. Queues allow for the co-existence
of many applications and their processes in the Multi-Processing Environment
(MPE). Queues are a scheme which allow many processes to be executed
in a “concurrent” manner. The process is the basic unit of activity in a
computer. Every request for CPU time must have a process and that process
must be assigned a priority.

 In discussing the MPE Queuing Algorithm we are talking about the
queue that controls the activity of the CPU. This is often referred to as the
Ready Queue. The process that determines the nature of any given process
and what priority it deserves within the queue is called the Dispatcher.

How does the Dispatcher Work?
Understanding the method the Dispatcher uses in assigning and

adjusting priorities is the key concept in understanding system queuing and
thus system performance. The Dispatcher is the entity that assigns a
process’ priority, gives the process time on the CPU (this is called
Launching), monitors the process’ life on the system, adjusts the process’
priority (usually down in priority), and sees that the process gets the CPU
again (when it becomes ready).

What are the rules that the Dispatcher uses for controlling queues?
In assigning priorities the Dispatcher uses a numeric range from 0 to

255. These numeric values are assigned to five basic scheduling or
execution queues. There is a bit more complexity to the whole thing than
this, chiefly because of the addition of the Workload Manager product (at
release 5.0 this expanded the potential queues from the basic abilities found
in the “classic” queuing we have all become comfortable with). In the figure
that follows the very bottom portion of the SHOWQ command (or SHOWQ
;STATUS) shows the queues and their setup:

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 2

------QUANTUM-------
QUEUE BASE LIMIT MIN MAX ACTUAL BOOST TIMESLICE
----- ---- ----- --- --- ------ ----- ---------
 CQ 152 200 1 2000 114 DECAY 200
 DQ 202 238 2000 2000 2000 DECAY 200
 EQ 240 253 2000 2000 2000 DECAY 200

Showq output

The SHOWQ command actually shows only the three queues that are
generally used for most user activity. There are in reality five MPE execution
queues.

 In the figure below the queues are shown using a screen found in
SOS/3000 from Lund Performance Solutions (LPS). The execution queues
are found in the third section under the heading “Scheduling Information”.

SOS/3000 E.11v(c) LPS TUE, APR 29, 1997, 11:15 AM E: 00:25:54 I: 01:08
---------------------------- System Configuration -----------------------------
|CPU Type : 947LX HPSUSAN: 742502121 MPE/iX Version: B.40.00 |
|Memory Size: 160M Physical Console: 20 OS AIF Version: A.03.01 |
|User Mode : MULTI Logical Console : 20 MI AIF Version: A.02.00 |
------------------------- Job and Session Information -------------------------
|Jobfence : 7 Job Limit : 22 Job Count : 14 Next Job # : 43|
|Outfence : 7 Sess Limit : 99 Sess Count: 74 Next Sess #: 106|
|Jobsecurity: HIGH Streams Dev: 10 |
|Max # J/S : 2500 Max # Procs: 5460 Max # Open Files/Process: 1024|
----------------------------Scheduling Information ----------------------------
| Queue Base Limit Quantum Maximum Minimum Time Slice Boost |
| AS 30 99 |
| BS 100 150 |
| CS 152 200 49 2000 1 200 DECAY |
| DS 202 238 2000 2000 DECAY |
ES 240 253 2000 2000 DECAY
Enter Command:

Sos/3000 System Configuration Screen

In both the output from the ShowQ and the System Configuration
screen from within SOS/3000 there are several columns. It is important to
have an understanding of those columns and what they mean.

�� Queue - This is the queue name. Sometimes “CQ” is used to refer to the
queue. Sometimes “CS” is used. When an “S” is used next to the queue
reference it often means that the queue is circular in nature (that is that the
queue priority values change during the life of the process).

�� Base - This is the highest priority value in the given queue (or top) .

�� Limit - This the lowest priority value in the queue (or bottom) .

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 3

�� Quantum (the same as Actual on the SHOWQ) - This the value that the
Dispatcher has calculated for the queue. It represents the average amount of
time the normal transactions use. This is measured in milliseconds and is
calculated dynamically by the Dispatcher. By default the C queue’s
Quantum is calculated continually by the Dispatcher as it monitors that
queue. Historically the D and E queues had their values set to 2000
milliseconds. A Quantum is the value the Dispatcher assigns to a process
before the Dispatcher again adjusts the processes priority and compares it’s
priority to that of others requesting the CPU.

�� Maximum (Max) -This is the maximum value that a quantum value can be
limited to.

�� Minimum (Min) - The minimum value that a quantum that can be limited
to.

�� Time Slice - This is the length of time a process is given before it
generates an interrupt. In order to avoid having a CPU bond process take up
all of the CPU time an interrupt is generated. This allows for a check of the
processes status and is intended to keep that process from taking up all of
the available CPU time.

�� Boost - This value controls what happens to a process when it reaches
the bottom of a given queue. The word “Decay” here means that the process
retains the value at the bottom of the queue. The word “Oscillate” means that
the Dispatcher will bounce the processes priority up to the top value of the
given queue when the bottom is reached.

When the queuing algorithm is at work it handles things in the fashion
described in the picture that follows. This is the usual default setup that I
have found in place in about 90 percent of all installations (sometimes it is left
that way because the repercussions of making changes to it were not
understood).

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 4

E

D

C

B

A

30

99

152

200
202

238
240

253

100

150

Interactive
Users

Hi-Pri
Batch

Lo-Pri
Batch

Queuing Illustration

In the Queuing illustration there are five basic queues. These are
given a range of priority queues that start with 30 and end with 253 (along the
continuum that was mentioned earlier from 0 to 255). The five queues allow
the Dispatcher to assign a queue and thus a numeric priority to processes in
such a way that those of higher importance get higher priority. This is how
the various queues work:

�� The A queue is reserved for very important system processes. These
processes absolutely must have the CPU immediately. The A queue has a
range of 30 to 99. Processes of a lower priority will lose the CPU to
processes in this queue (this is called Preemption).

�� The B queue is usually reserved for important system processes also.
However, this can be used for some carefully placed user applications.
Performance monitors typically run here since all of their information must be
gathered at the same time. But other applications can be carefully placed in
this queue for better performance. The B queue has a range of 100 to 150.

�� The C queue is typically used for interactive users. This queue typically
has a range of 152 to 200.

�� The D queue is typically used for high priority batch processing. This
queue typically has a range of 202 to 238.

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 5

�� The E queue is typically used for low priority batch processing. This
queue typically has a range of 240 to 253.

The SHOWQ command shows the execution priority but nothing more,
so I have used the statistics from the global screen within SOS/3000 to help
explain more about processes and their priorities.

PIN J/S# Session/User Name Cmd/Program CPU% QPri #Rd #Wr LDV #Tr PRes
 4 <sys> <system process> .< AL13 0 0 - 0 -
 87 <sys> <system process> JOB .< BL100 0 0 - 0 -
 6 <sys> <system process> .< CL152 0 0 - 0 -
 36 J18 FAX,RAFX.H3000 RAFX .< DS202 0 0 10 0 -
 24 <sys> <system process> NMCONSOL .< BL149 0 0 - 0 -
 308 J41 DKPURGE,PURGE.H3000 RAPG1 .1 DS238 2 0 10 0 -
 7 <sys> <system process> .1 CL152 0 0 - 0 -
 15 <sys> <system process> .1 AL13 0 0 - 0 -
 119 J10 PRINT,RAPB.H3000 RAPB .1 CS152 0 0 10 0 -
 23 <sys> <system process> NMTRCMON .2 BL149 0 0 - 0 -
 2 <sys> <system process> LOAD .3 BL142 0 0 - 0 -
 329 <sys> <system process> VTSERVER .3 CS152 0 0 - 0 -
 5 <sys> <system process> .3 CL152 0 11 - 0 -
 125 <sys> <system process> .4 BL146 0 0 - 0 -
 3 <sys> <system process> .7 BL100 0 0 - 0 -
 260 S9 FILE.H3000 RASYPO 1.2 CS152 0 0 125 0 -
 179 <sys> <system process> VTSERVER 1.5 CS152 0 0 - 0 -
 332 S17 P029SKSR,TECH.H3000 RASYPO 1.5 ----- 3 0 26 2 .2
 182 S20 TECH.H3000 RASYPV 1.6 CS152 0 0 102 3 .1
 178 S17 P029SKSR,TECH.H3000 RASYPV 1.9 CS152 0 0 26 1 .5
 190 J31 OUTGOING,DSP4.H3000 RIDS4 2.6 DS202 0 2 10 0 -
 232 S39 TECH.H3000 RASYPV 3.0 CS152 1 0 113 6 .1
 290 J39 RECEIVE,DRP4.H3000 RIDR4 3.1 DS204 2 1 10 0 -
 403 S77 TECH.H3000 RASYPO 3.6 CS152 4 0 210 4 .4
 107 J12 VERIFY,DV1.H3000 RIDV1 5.2 DS202 2 2 10 0 -
 365 S102 MGR.LPS SOS 6.4 BS100 8 0 603 1 .<
 193 J32 OUTGOING,DV2.H3000 RIDV2 6.6 DS202 0 1 10 0 -
 311 J42 DKQPURGE,BATCH.H3000 RIPG1 7.1 DS238 10 2 10 0 -
 285 S101 STEVE,MGR.LPS SOS 7.7 BS100 1 0 64 0 -
 448 S17 P029SKSR,TECH.H3000 RASYPO 8.7 CS152 0 0 26 0 -
 184 J35 TECHPROD,MGR.H3000 UDMSSHR 29.6 DS238 6 0 10 0 -

SOS/3000 Process Detail output

The SOS/3000 Process statistics output shows a number of headings.
However the ones we are concerned with are the PIN – Pin Number (every
process must be assigned a pin, the Job or Session number, the
Session/User Name, the CMD/PROGRAM name and the QPRI. The QPRI
column consists of a four or five character value. The first letter is the priority
(A - E), the second is either an S or an L (L meaning linear - this kind does
not have it’s priority changed by the Dispatcher, S meaning circular – this kind
can be adjusted by the Dispatcher). The third through fifth values are the
numeric priorities assigned by the Dispatcher. While watching a process via
a monitor such as SOS/3000 the priorities of those processes with C, D, or E
priorities should be adjusted downward (unless the Oscillate option for decay
has been turned on for that queue).

Why does the Dispatcher adjust priorities?

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 6

The Dispatcher monitors and adjusts the priority of a process (usually
by increasing the value – thus lowering it’s ability to compete for the CPU).
This is called Dispatcher Decay. Why is the Dispatcher designed to do this?
Because the design of the algorithm is intended to help processes that use
the CPU for a very short amount of time get completed. The design,
however, will penalize those processes who use it for a very long time by
dropping their priority. This is called PSPTF or “Preemptive Shortest
Processing Time First”. This is done to keep more lengthy transactions from
hogging the CPU and keeping others from getting CPU time.

The roll of the Dispatcher looks like the illustration below. As
processes begin making a demand on the CPU only one process is launched
on the CPU. The figure below uses just the C queue in the illustration. The
circles with the P1 through P5 represent the individual processes. Only one
process has requested CPU time. That process will get all the CPU time it
needs until it blocks for another resource or is completed.

P2 P3 P4 P5

152

154

156

158

160

162

164

166

168

170

172

174

176

178

C Queue

Dispatcher

P1

200

.

.

.

C Queue Illustration

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 7

In the next figure many more processes are competing for CPU time.
In this example the Dispatcher must work much harder. It must keep track of
each processes priority, dynamically calculate the quantum, preempt those
which because of Dispatcher Decay no longer deserve the CPU and launch
processes on the CPU (those processes which fall below the numeric and
alphabetic priority of others have the potential to be PRE-EMPTED in their
use of the CPU). This work takes CPU time so busier systems will begin to
notice higher and higher amounts of CPU time allocated to the Dispatcher.

152

154

156

158

160

162

164

166

168

170

172

174

176

178

200

.

.

.

P1

P2

P3

P4

P5

C Queue

Dispatcher

C Queue Illustration

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 8

What is Process Preemption?

Process Preemption means that a processes priority has dropped
below that of another process with a higher priority (that is also ready for
execution - which means it has it’s code and data ready). Process
Preemption can be measured as what is called a WAIT STATE. On very
busy systems the percentage of this Preemption Wait State can become very
high. The Dispatcher must work very hard to keep up with this activity and
there is CPU assigned to the Dispatcher as a process. The result of
Preemption is that individual processes will begin to labor and complete more
slowly as a very high percentage of their time is spent being Pre-empted.

The Process and Preemption
This is how the process works. The Dispatcher assigns a priority to

each process in the Ready Queue. The highest priority process that is ready
is launched on the CPU. If that process continues processing without
needing another resource or without another process of a higher priority
requesting the CPU it continues until the length of the quantum for it’s
assigned queue has passed. The Dispatcher will drop the priority, usually in
increments of two, and the process will continue. At anytime during the life of
the process it can be pre-empted by a higher priority process. It can also be
stopped for other resources. If a process is stopped the Dispatcher retains
information about the process and how much of the processes time is yet to
be used at that priority level. When that process is the highest priority
process again and is launched the process continues from where it left off
and uses the remainder of it’s quantum.

How can you use a proper understanding of MPE Queuing Theory to your
benefit?

Once the theory of MPE Queuing is properly understood some small
changes to the queuing parameters can help the performance on individual
processes or groups of processes. Changes that are made to the default
setup should be carefully monitored (remember that changing the queuing
parameters is just reallocating the same pie of CPU usage). The default
queuing setup has proven to be the best setup in probably 90 percent of the
HP3000 sites (by default I mean C queue set to 152 - 200, D queue set to
202 - 238, and E queue set to 240 - 253) so change it with wisdom and care.

What can be changed and how can it help Performance?
In the default settings each queue is discreet, there are no overlaps, a

B queue process will always have a higher priority than a C queue, a C
queue process will always have a higher priority than a D queue and so on.
In this setup processes in the lower priorities only get the CPU when no
process of a higher priority is present and ready. One change to the queuing
setup that may help with the performance of these lower priority processes
(these are often batch jobs) is to change the queues so there is some

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 9

overlap. How does this help the performance of these lower priority
processes? They can now compete with those processes at the bottom of
the queue above them for the CPU. This can enable them to get more CPU
time.

Another possibility for queue parameter changes is to use the often
unused E queue as a secondary batch queue. This queue can be modified
so that it crosses into the C queue and reaches down into the D queue or
below. This change would help those jobs placed in the newly defined E
queue get a higher percentage of the CPU. Sessions placed here would get
an equal opportunity for the CPU’s attention until they dropped below the C
queue’s bottom (or limit) and then would be treated with less preference down
in the D and E queue. The figure below shows the potential setup of this
newly defined E queue.

 showq;status

 ------QUANTUM-------
QUEUE BASE LIMIT MIN MAX ACTUAL BOOST TIMESLICE
----- ---- ----- --- --- ------ ----- ---------
 CQ 152 200 1 2000 12 DECAY 200
 DQ 190 238 2000 2000 2000 DECAY 200
 EQ 152 253 2000 2000 2000 DECAY 200

SHOWQ ;Status

Why would one of these strategies be used? The strategy illustrated in
Option 1 of the figure that follows (entitled ‘Queuing Change Options’) would
help job throughput and completion. Jobs that took a very short amount of
CPU time would compete with sessions that require more CPU time and thus
are found near the bottom (or limit) of the queue. This would help the jobs
complete more quickly. There are some environments that have an important
job or two that must complete in a timely fashion so this strategy would help
those jobs.

Jobs placed in the E queue under Option 2 are also afforded a better
opportunity to run on the CPU since they compete with processes in the C
queue. However, after initially competing with C queue priority processes
placed in this redefined queue will end up down in the D queue. Finally, if
they are very lengthy jobs they end up down in the E queue and receive
whatever CPU is available. Processes placed in this extended and redefined
queue are allowed to compete with the on-line users queue for a short time.
If they complete during this time they never leave the higher priority range. If
they take longer to process they end up in the D queue and then the E queue.

The key understanding about these various options is that under the
normal scheme each execution queue gets only the CPU that is left after the
higher queue receives what it needs. In the changes we have described the
lines between the queues are no longer there and queues will begin to
compete with each other for CPU time.

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 10

AQ

BQ

CQ

DQ

EQ

30

99

100

150

152

200

202

240

242

253

Default

DQ

240

180

Option 1 Option 2

EQ

152

253

Queuing Change Options

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 11

How are the queues changed?
Queues can be modified in several ways. The most common way is

by using the TUNE command. The Tune command can change a number of
parameters that affect the queuing algorithm.

One is the base (or the top of the queue), and another is the limit (the
lowest value in the queue). Adjusting the base and limit can affect
performance of processes in a queue by allowing them to run in higher
priority which may overlap that of another.

A second thing that can be changed with the TUNE command is the
minimum and maximum quantum. This has usually only applied to the C
queue but now, with the latest operating system versions it can also work with
the D and E queue. What this controls is the calculation of the quantum. If a
minimum and maximum value is set to some value higher than zero the value
must stay above that level. This would keep the dispatcher from dynamically
calculating the value as it normally does unless the calculation was above the
minimum threshold. If the calculated value would have been below the
threshold, the value is set to the specified minimum. What is the impact of
this? Those short transactions that would have completed in less than a
quantum are not affected. They cannot be forced to use more CPU than they
need. Those more lengthy processes would decrease in priority as they
normally would but they would potentially get more CPU time at each priority
level since the quantum is longer. This strategy is an effort to help processes
that take more time get more CPU before they end up at the bottom of the
queue. It helps them get their required CPU before reaching the bottom or
limit of the queue.

A third change to consider is switching between the normal setting of
Decay and the option of Oscillate. The Decay setting will cause processes in
the queue to drop to the bottom (or limit) of the queue and stay there.
Oscillate causes processes that reach the bottom of the queue to jump back
up to the top. This change helps longer lasting processes compete for the
CPU more by jumping them back up to the top of the queue.

Each of these queue parameter changes involves helping the longer
and slower processes get more CPU. The default priority scheme does a
very good job of reserving the CPU for the very short transactions while
preempting those that take longer to complete.

The figure that follows shows the TUNE command parameters and
how to use them. To change the tuning of the E queue to range from 152 to
253, for example, you would enter this command:

TUNE ;EQ=152,253

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 12

TUNE

 Changes the scheduling characteristics of the scheduling
 queues. These characteristics include base and limit
 priorities, quantum bounds (min and max), boost property
 and timeslice. (NM)

SYNTAX

 {CQ}
 TUNE[minclockcycle][[;]{DQ}=[base],[[limit][,[min][,[max]
 {EQ}
 [,[{decay }]][,[tslice]]]]]
 {oscillate}

 [[;]...]

CAUTION

Misuse of this command can significantly degrade system operating
efficiency.

TUNE Command Parameters

Priority control for individual processes
Priority control for individual programs, jobstreams or sessions can be

done in a number of ways. One way is to place a jobstream into specific
queue is by using the PRI=queue statement on the jobs first line. At logon
the user can add PRI=queue (BS) which can also be specified as an option
logon in a UDC file. The program itself can be placed into a specific queue
using a programmatic call.

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 13

ALTPROC

 Changes characteristics for the specified processes. Currently,
 you may change the priority, queue attribute and workgroup for
 a process. This command requires OP or SM capability.

SYNTAX

 ALTPROC [[PIN=]{pinspec }]
 {(pinspec [,pinspec]...)}
 [[;JOB=]{jobspec }]
 {(jobspec [,jobspec]...)}

 { [;PRI=] pri
 [;WG=]{workgrp
 NATURAL_WG } }

 [;TREE | ;NOTREE]
 [;USER | ;ANYUSER]

 [;SYSTEM]

ALTPROC Command Parameters

Individual processes can be altered to higher or lower priorities using
the ALTPROC command. This command requires SM (system manager) or
OP capability and can alter by pin, or job number/session number. This
works well on a limited basis chiefly because this kind of manipulation
requires a lot of time. Changes made in this way last only until the end of the
process.

Using the system available commands to modify the definition of the
queues can sometimes give only a limited benefit. In more difficult situations
a queue management product can provide the power and complexity to help
control the competing processes better. Hewlett-Packard offers the very
powerful product called Workload Manager while Lund Performance
Solutions offers Q-Xcelerator. KLA - express is also a product that allows for
a greater degree of control over the execution queues.

HP and third party packages that allow greater control.
The workload manager product extends the capabilities of the

traditional scheduling algorithm. A collection of user or system processes
make up a workload. And these workloads allow for more execution queues
than the five that exist in the traditional queuing algorithm. A new set of

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 14

commands allows for the setup and viewing of the new queues (SHOWWG,
ALTWG, NEWWG, PURGEWG, and SHOWWG) and there is some
interesting extended capabilities. The new queues can have a minimum and
maximum CPU percentage. This means that a guaranteed amount of CPU
can be there for a workload regardless of the load on the system.

Queue Management Tools
Queue management tools approach system queue controls from a

stand point of controlling the priority. In this scheme controlling the priority is
deemed sufficient since only those processes with the highest priority are
launched and it is not necessary to maintain a minimum CPU percentage. A
product like Q-xcelerator has some other interesting capabilities like the
ability to bump from one queue to the next after a certain number of
milliseconds have passed. The disadvantage of a queue management tool is
that they operate as a job on the system. They take overhead and since they
come along after the dispatcher has assigned a process it’s queue priority
and change the queue they can need to do a lot of work.

The following figure is an example of how a queue management tool
can help redistribute the existing execution queues.

E

D

C

B

A

30

99

152

200
202

238
240

253

100

150

Interactive
Users

Hi-Pri
Batch

Lo-Pri
Batch

Counter
People

Finance

Shipping
Orders

Queuing Management setup

What are the benefits of understanding and modifying the queuing
parameters?

MPE Queuing: How It Works, How To Make It Work For You!
4115 - 15

In perhaps 90 percent of the sites that I have seen nothing has been
done to alter the default queuing parameters. In most of these the on-line
users are happy with response and the batch jobs complete in reasonable
time. However, as a system gets busier and the utilization approaches a
point of trouble due to a restriction in CPU resources, modifying the queuing
parameters can be a life saver. This step can help extend the useful life of
the system (remember that principle that you are robbing Peter to pay Paul).
Additionally, in systems where certain batch processes have a higher
importance than others, queue modification can save the day. I have helped
sites that had a pick list (in an order fulfillment environment) that was
absolutely vital and needed a faster response time. But since it normally ran
in the B queue it lost out to on-line activity in the higher C queue. Queue
management via the ALTPROC command and then via a queue
management application helped insure that this program got what it needed.

Queue management can help distribute resources in a better way and
allow for distribution of resources peculiar to the specific environment. This
will keep users satisfied and management content that the system is being
managed well. A good understanding of queue parameters and proper use
can maximize the hardware investment, getting more useable life out of the
system.

by: Jeff Kubler
Lund Performance Solutions
6/17/97

